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Abstract
Terrestrial ecosystems regulate Earth's climate through water, energy, and biogeo-
chemical transformations. Despite a key role in regulating the Earth system, terrestrial 
ecology has historically been underrepresented in the Earth system models (ESMs) 
that are used to understand and project global environmental change. Ecology and 
Earth system modeling must be integrated for scientists to fully comprehend the role 
of ecological systems in driving and responding to global change. Ecological insights 
can improve ESM realism and reduce process uncertainty, while ESMs offer ecolo-
gists an opportunity to broadly test ecological theory and increase the impact of their 
work by scaling concepts through time and space. Despite this mutualism, meaning-
fully integrating the two remains a persistent challenge, in part because of logistical 
obstacles in translating processes into mathematical formulas and identifying ways to 
integrate new theories and code into large, complex model structures. To help over-
come this interdisciplinary challenge, we present a framework consisting of a series of 
interconnected stages for integrating a new ecological process or insight into an ESM. 
First, we highlight the multiple ways that ecological observations and modeling itera-
tively strengthen one another, dispelling the illusion that the ecologist's role ends with 
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1  |  THE NEED TO INTEGR ATE ECOLOGY 
AND E ARTH SYSTEM MODEL S

Terrestrial ecosystems are an integral component of the Earth sys-
tem. They govern the exchange of energy, water, and greenhouse 
gases between Earth's land surface and atmosphere and provide 
numerous services for society, including climate regulation and mit-
igation. For example, terrestrial ecosystems absorb approximately a 
third of anthropogenic carbon emissions (Friedlingstein et al., 2019), 
mitigating the impact of these emissions on climate change. They 
also play an essential role in regulating global water fluxes, from 
moderating soil water availability to influencing precipitation pat-
terns and evaporative cooling. The physical properties of terrestrial 
ecosystems, including their surface reflectivity (i.e., albedo) and sur-
face roughness, also help control the amount of energy absorbed 
and released by the land surface (Bonan, 2008, 2016). Human man-
agement of terrestrial ecosystems can change these biosphere–
atmosphere interactions, for example, by reducing carbon storage 
through deforestation and increasing greenhouse gas emissions 

through agricultural fertilization (Lade et al., 2019; Law et al., 2018). 
Given the importance of terrestrial ecosystems within the Earth 
system, modern ecological research papers frequently recommend 
updating existing ESMs to reflect new evidence or ideas about ecol-
ogy that may have large-scale impacts on climate. This integration, 
however, has been slow (Fisher & Koven, 2020).

Historically, integration of ecological insights into ESMs has 
been hampered because of a disconnect between the scientists 
conducting empirical research and those engaging in modeling work 
(Figure 1), a lack of cross-disciplinary training in modeling and empir-
ical skills, and undervaluing of insights derived from modeling and 
data exercises completed along the way to incorporating an ecolog-
ical process into an ESM. Although many scientists engage in both 
empirical and modeling work, the prevailing paradigm for integrating 
ecology into models tends to separate the tasks involved into the 
subdisciplines of empirical data collection and model development 
(Figures 1 and 2). Even when ecologists engage with model develop-
ment, the models used in ecology often fall short of the global scale 
of ESMs. While these models generate valuable insights regardless 

initial provision of data. Second, we show that many valuable insights, products, and 
theoretical developments are produced through sustained interdisciplinary collabora-
tions between empiricists and modelers, regardless of eventual inclusion of a process 
in an ESM. Finally, we provide concrete actions and resources to facilitate learning 
and collaboration at every stage of data-model integration. This framework will create 
synergies that will transform our understanding of ecology within the Earth system, 
ultimately improving our understanding of global environmental change, and broad-
ening the impact of ecological research.

K E Y W O R D S
collaborative bridging, data-model integration, Earth system models, global ecology, history of 
models, interdisciplinary workflow, modeling across scales

F I G U R E  1  Historically, the process 
of integrating ecology in Earth System 
models (ESMs) has often separated 
tasks along disciplinary lines, with 
empirical ecologists feeding data into 
a mysterious “modeling” process and 
modelers modifying and using data 
without a thorough understanding of 
data collection procedures and caveats. 
The newest generation of scientists has 
the opportunity to pull back the curtain 
by developing cross-disciplinary skill sets 
and building stronger, more collaborative 
bridges between empirical and modeling 
communities, with the goal of accelerating 
the integration of ecological concepts into 
ESMs
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of their ultimate contribution to ESMs, large-scale integrative under-
standing of global change impacts requires the use of ESMs because 
of the many interactions within and among the components of the 
Earth system. For clarity in terminology, we define “Earth system 
models” (ESMs) as models which represent the interactions among 
land, atmosphere, ocean, and cryosphere processes and follow the 
principles of energy and matter conservation. While we focus specif-
ically on including ecology in the terrestrial component of ESMs, our 
recommendations can apply to similar challenges in other disciplines 
(e.g., marine ecology and modeling ocean–atmosphere interactions). 
The land component of ESMs can and should continue to incorporate 
ecological processes to improve model realism and to better under-
stand the role of ecological processes within the larger Earth system.

Scientists in both empirical and modeling communities are 
aware of the need for and benefits of collaborating around ESMs. 
ESM developers understand that ecology plays an important role in 
controlling terrestrial ecosystems and that ecological insights can 
generate models that more faithfully represent real systems, both 
conceptually and in terms of model uncertainty. Ecological pro-
cesses, for example, can generate amplifying or stabilizing feedbacks 

that can fundamentally alter climate and when incorporated, change 
model performance (e.g., nitrogen constraints on CO2 fertilization of 
plant NPP changed the magnitude of model-projected future shifts 
in ecosystem carbon storage; Thornton et al., 2007). Empiricists 
understand the potential large-scale impact of their work and that 
ESMs can help to realize this impact (Figure 3). For example, ESMs 
are useful for expanding the temporal and spatial scale of ecological 
research beyond the constraints of a particular set of sites or ex-
periments. Additionally, models can be used to explore interactions 
and feedbacks between ecological and climate factors that might be 
prohibitively complex to measure directly. Models are an important 
means for ecologists to explore new concepts and generate insights 
about complex systems that can lead to testable hypotheses. Finally, 
models are a means to understand the impact of specific manage-
ment and policy decisions and help stakeholders to make science-
informed decisions.

Despite the mutual benefits that empirical and modeling commu-
nities receive from collaborating, obstacles remain to better integrat-
ing these communities (Leuzinger & Thomas, 2011; Reed et al., 2015). 
While most empiricists are adept at developing ecological theory for 

F I G U R E  2  The prevalent existing 
paradigm in ecology–Earth system 
model (ESM) integration separates tasks 
along disciplinary lines, with empirical 
scientists giving data and generalized 
patterns to modelers who then develop 
quantitative models and work with 
ESMs. We recommend a shift away from 
this historical paradigm toward a more 
collaborative one in which empiricists and 
modelers are involved in co-producing 
knowledge (with differing degrees of 
contribution) at every stage of data 
collection, theory development, and 
model integration. We also emphasize the 
two-way exchange of ideas, insights, and 
data between empirical- and modeling-
driven activities [Colour figure can be 
viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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their specific species or system, translating that theory into a gener-
alized mathematical formula can be challenging without decades of 
research gathering long-term data over broad scales. Next, empiricists 
face the formidable task of integrating this mathematical formulation 
into an ESM. ESMs can exceed millions of lines of code (Danabasoglu 
et al., 2020), and hunting for the right place to insert new code without 
breaking the rest of the model can be daunting. Working within the 

particular computing language or framework of an ESM can also be 
intimidating without extensive training in computational science and 
applied mathematics, which university ecology programs typically do 
not offer. Additionally, the overwhelming complexity and ambiguity of 
large models can make it difficult, without training, to assess the reli-
ability of model results. Given these obstacles, an empirically focused 
ecologist might question whether it is a good use of their time to put 

F I G U R E  3  In the hierarchy of model development, simple models of individual processes, classes of organisms, and inorganic components 
(site/local scale) are often pieced together to form larger models of ecosystems and regions (ecosystem scale) and ultimately combined to 
form Earth system models (global scale). Data gathered at each of these scales can be used to inform model development at the same scale 
[Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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in the training and work involved with modeling ecological processes 
in the Earth system.

Modelers working to integrate ecological processes into ESMs, 
many of whom have formal ecological training, also face challenges 
in this partnership. Modelers must strive for parsimony in model 
development (i.e., avoiding unnecessary model complexity; see 

Table 1), and balancing this against the push to continuously incorpo-
rate more and more ecological detail can be difficult. Incorporating 
new processes can sometimes increase rather than decrease model 
uncertainty. Ecological and biological processes are inherently more 
complex and challenging to quantitatively define than the physical 
and/or chemical processes that drive most atmospheric or ocean 

Term Definition

Benchmarking Comparing models against a consistent set of observational data to 
document the performance of multiple models or improvements with 
newer versions of a particular model

Calibration Setting or adjusting model parameters based on model performance 
against a training dataset. Separate from validation

Data assimilation Adjusting model states at regular time intervals based on observations

Ensemble Multiple model simulations from one or more models that follow a 
standard protocol, including "multi-model" ensembles of multiple 
models and "multi-member" ensembles that differ in initial conditions 
or parameter values. Ensembles are used to understand model 
variability and uncertainty

Equifinality The ability of multiple model configurations or parameter sets to explain 
the same set of observations

Evaluation Assessing model performance, often using a validation or benchmarking 
approach

Feature fatigue The continual addition of new model processes, often with diminishing 
returns on model performance

Fluxes Movement of matter or energy between the components of a model. 
Alternatively: flows

Forcing Driver inputs external to a model

Forecasting A type of prediction that generates model outputs of future conditions 
based on current knowledge and initial states

Modularity A property of models in which one representation of a process can be 
swapped out for another to allow comparison of model formulations

Parameter Constant within an equation in a model

Parameterize To represent a complex process as a simplified equation that relates 
parameters and variables to one another

Parsimony A lack of unnecessary model complexity; the quality of including only 
model components that contribute to the goals of model development

Prediction Model outputs beyond the scope of observed data

Projection Model outputs based on a certain scenario or set of conditions occurring 
as represented in the forcing data

Realism The adherence of model representations to the actual properties and 
behavior of ecosystems

Sensitivity How model output changes in response to shifts in inputs or individual 
model parameters

States The current values of components of a model system, which typically 
change through time. For example, soil moisture, soil temperature, 
biogeochemical pools

Toy model A simple model that allows for exploration of a subset of ecosystem 
processes

Traceability The ability to connect model sensitivity or uncertainty back to a 
particular model component

Trait Property of an ecosystem component that maps onto model parameters

Validation Evaluating model performance against an independent dataset without 
modifying parameters. Separate from calibration

TA B L E  1  Glossary of commonly used 
words in Earth System Modeling
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models. As an example, the physiology of stomata does not conform 
to the principles of fluid dynamics that underpin the atmospheric 
and ocean components of ESMs. Quantitative ecology is a robust 
field, but the math of ecology is often defined in units of genes or 
whole organisms using statistical relationships, rather than the units 
of matter and energy and process representations that ESMs use, 
and translating between the two is persistently difficult.

Even when ecology can be quantified in a way that can be in-
corporated into an ESM, ecological data can be time- and resource-
intensive to gather, and model development can be limited by the 
availability of all the necessary data to drive, tune, or test a new pro-
cess. Including all ecological processes that impact water, energy, or 
biogeochemical cycles can lead to models that are overly complex 
and lack adequate foundations in measured data. Modelers are some-
times reluctant to add a new process without convincing evidence 
that its impact outweighs the uncertainty it adds to the model. Most 
ESMs strive to balance ecological realism with excessive complexity, 
which can lead empiricists to be frustrated with the disconnect be-
tween model parameters, processes, and reality. Meanwhile, mod-
elers may grow frustrated and overwhelmed by the abundance of 
ecological data that “should” but cannot easily be incorporated into 
models. Resolving the realism–complexity dilemma requires mod-
elers to understand the principles and constraints of researching 

ecological processes, while empiricists should be more involved in 
model development and aware of the unique data needed to translate 
ecological concepts for ESMs.

We address these challenges by providing a clearly defined map 
of the stages involved in the incorporation of a new ecological idea 
into an ESM. We seek to pull back the curtain on the complex, multi-
scale workflow of coupled model-data-theory development (Figures 
1–3) and lower the barriers to interdisciplinary collaboration by artic-
ulating various phases and considerations along the way (Figure 4). 
Below, we discuss the history of incorporating ecology into ESMs to 
provide context for the characteristics of modern ESMs. We then 
present our suggested workflow for integrating ecological processes 
into ESMs (Figure 4). In this workflow, we describe the iterative pro-
cedure of data collection and model development for understanding 
ecological processes and models at different scales (Figure 3). We 
highlight three stages through this workflow and the valuable out-
comes at each stage, regardless of whether the endpoint of incor-
porating an ecological process into an ESM is reached. Finally, we 
include a list of resources to guide scientists through all the stages of 
this workflow. These guidelines and the suggested workflow will fa-
cilitate stronger connections between empirical and modeling com-
munities, improving ESMs through realistic process representation 
and increasing the impact of ecological research.

F I G U R E  4  Although scientists sometimes think “The Illusion” (top panel) is the way that ecological concepts are integrated into Earth 
system models (ESMs), the reality is more like a complex metabolic cycle or eddy-filled stream, with different data inputs (gray boxes) and 
valuable insights (tan boxes) throughout the workflow. We identify three key phases in integrating a new process into an ESM, namely, 
“Assess process & potential impact,” which emphasizes conceptual skills (green boxes), “Test process alone,” which involves simple 
programming (teal), and “Test process with ESM,” which involves more complex programming (blue). Within each phase, we offer specific 
questions to guide empiricists and modelers along the way [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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2  |  HISTORY AND CONTE X T FOR 
CURRENT DECISION-MAKING IN ESM 
DE VELOPMENT

For many ecologists, Earth system modeling may seem a distant dis-
cipline, but in fact, ecology is already an important part of ESMs. 
The origin of ESMs is nearly 100 years old. In the early 20th century, 
an early model of weather forecasting (Richardson, 1922) required 
knowledge of land surface temperature, surface-absorbed radiation, 
and exchanges of heat, moisture, and momentum with the atmos-
phere. As a result, the model acknowledged the role of energy and 
moisture fluxes from plant canopies, and included rough represen-
tations of stomatal conductance and leaf fluxes in its calculations. 
In the 1960s, modelers expanded their work to the global scale 
with different labs and centers developing atmospheric general cir-
culation models, which would form the foundation of some of our 
present-day ESMs (Edwards, 2011). As model development contin-
ued, terrestrial vegetation and human modification of the land be-
came recognized as necessary aspects of climate science (Schneider 
& Dickinson, 1974), and prominent studies identified surface albedo, 
evapotranspiration, and deforestation as important climate regula-
tors (Charney et al., 1975; Dickinson & Henderson-Sellers, 1988; 
Sagan et al., 1979; Shukla & Mintz, 1982).

In the 1980s, attention turned to representing more than the 
atmosphere in global models. Models of the land surface, such as 
the Biosphere-Atmosphere Transfer Scheme (Dickinson, 1986) and 
Simple Biosphere model (Sellers et al., 1986), were developed for 
coupling with atmosphere models. These models initially focused on 
the biogeophysical processes of energy, moisture, and momentum 
fluxes and the associated hydrologic cycle. These models repre-
sented vegetation in more detail, including traits such as stomatal 
conductance, canopy height, leaf area index, and rooting depth. 
Photosynthesis was also recognized as an essential process to model, 
initially as a diagnostic (Dickinson et al., 1981) and later as a predic-
tor (Sellers et al., 1996) of carbon and water fluxes (Bonan, 1995; 
Denning et al., 1996). Building upon a history of ecosystem biogeo-
chemical models first conceived during the International Biological 
Program in the 1960s and 1970s, the carbon cycle was subsequently 
added to ESMs so that atmospheric CO2 concentration automati-
cally changed over time rather than being manually specified (Cox 
et al., 2000; Fung et al., 2005). Bioclimatic rules and simplified equa-
tions for competition for space were also added to allow vegetation 
composition and biogeography to change in relation to the simulated 
climate (Bonan et al., 2003; Foley et al., 1996; Sitch et al., 2003).

The current generation of ESMs now also includes models with 
nitrogen and phosphorus cycles, wildfires, biogenic volatile organic 
compound emissions, mineral dust emissions, methane, wetlands, 
agricultural management, and land use/land cover change (Bonan, 
2016). That many ecological and biogeochemical processes are now 
included in ESMs is a defining feature in the evolution of climate 
models, which initially focused on the physical system, to today's 
more comprehensive ESMs that emphasize the interdisciplinary 
aspects of climate science (Bonan & Doney, 2018). For example, 

representations of the nitrogen and phosphorus cycles were added 
to some ESMs because of their role in regulating the carbon cycle 
(Thornton et al., 2009; Wang et al., 2010; Yang et al., 2014; Zaehle 
& Friend, 2010). Similarly, more soil biogeochemical models are in-
cluding direct representations of microbial populations because of 
their controls on nutrient and carbon cycling (Huang et al., 2021; 
Kyker-Snowman et al., 2020; Wang, Peng, et al., 2017; Wieder et al., 
2015, 2018). However, many important processes are still absent 
from ESMs; for example, herbivores are recognized in ecology as 
important ecosystem drivers, but are not widely included in ESMs.

Conversations about including ecology in models have become 
increasingly common in the modeling community, particularly as 
modelers seek to better match model projections with observations. 
ESMs continue to be modified to include ecology that impacts model 
calculations of surface fluxes of energy, moisture, carbon, and mo-
mentum. What conditions need to be met for a process to be con-
sidered for integration into an ESM? The ecological properties and 
processes that have made their way into ESMs reflect choices by 
the modeling community about where to focus its efforts, as well as 
the practical limitations of the modeling work itself. In general, new 
ecological processes enter an ESM if: 

●	 The process can (or is hypothesized to) influence climate on large 
spatiotemporal scales. Given the effort needed to code and test 
the addition of an ecological process into an ESM, the impact 
of this addition needs to be visible on large spatial scales or 
on long time frames. For example, explicit representations of 
vegetation were added to ESMs because they had a clear 
impact on and improved the performance of climate models 
through regulating water fluxes on long (e.g., decadal) times-
cales (Dickinson, 1984; Dickinson & Henderson-Sellers, 1988; 
Sato et al., 1989; Sellers et al., 1986).

●	 The process can be reasonably incorporated into existing model in-
frastructure. New ESM developments build on earlier ones, which 
means there needs to be a clear plan for how to insert the code 
for the new process into the existing model code. In addition, this 
linking should be able to occur without major restructuring to the 
model's existing structure. For example, in order to integrate ni-
trogen cycling into an ESM, code needed to be developed to link 
nitrogen fluxes to the physics of the land surface and calculations 
of carbon fluxes (Bonan & Levis, 2010; Thornton et al., 2007).

●	 Process understanding and data are available to model the process 
globally. The equations representing the process need to be solva-
ble on a three-dimensional global grid (latitude, longitude, height) 
as well as on short timescales representing the model's time step 
for calculations (e.g., 30 min). Ideally, any input data required by 
the new ecological process should be available globally as a grid-
ded product or be calculable using existing variables simulated by 
the ESM. For example, the TRY database provides data that have 
been used to create global maps of plant traits that are used as the 
foundation for plant functional types (Kattge et al., 2011).

●	 The mathematics of the process are tractable within the limits of cur-
rent computing resources. Computing resources have significantly 
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expanded, allowing more ecological processes to enter models. 
However, there are still limits to numerical processing power. 
Processes must be reducible to a mathematical form that does not 
dramatically increase computing costs of the entire ESM, given 
that existing ESMs already push the capacity of the world’s most 
powerful supercomputers (Washington et al., 2009). For exam-
ple, representing biodiversity by modeling a large number of indi-
vidual plant species or soil microbial taxa would greatly increase 
computing costs, so simplified representations of plant functional 
types and soil decomposition are typically used.

●	 There is a community of researchers dedicated to developing, testing, 
and maintaining the process in the model. Writing the code for a 
new ecological process is only one part of the process for inte-
grating a new component into an ESM. Once code is written, it 
needs to be tested with different components of the ESM and 
under different simulation conditions before the process can be 
considered as an official addition to the ESM. In addition, the con-
tinued longevity of the process in the model requires there to be 
one or more researchers continuing to maintain and update the 
modeled process as new data about the process and new changes 
to the ESM are made. As such, a community of researchers with 
the resources to both advocate for the inclusion of the process 
and support its long-term inclusion in the model is needed.

With the origin of ESMs in the atmospheric and physics commu-
nities, it is perhaps not surprising that the incorporation of ecology 
into ESMs started in these communities. The modeling community 
has initiated several grassroots’ efforts to bring more ecologists into 
ESM work. These efforts range from creating conference workshops 
and research coordination networks (e.g., Cheng, 2018; Leuzinger 
& Thomas, 2011; Rogers et al., 2014) to leading tutorials and short 
courses to provide training for empiricists and modelers to bridge 
these subdisciplines (e.g., the CTSM tutorial at NCAR; FluxCourse; 
Bracco et al., 2015). However, these efforts are limited in the num-
ber of people they can reach. Larger, systematic changes in edu-
cation and training, funding structures, and engagement across 
communities are critical to shifting the current siloed paradigm. We 
propose a new practical roadmap for empiricist–modeler collabora-
tion that breaks down traditional disciplinary boundaries and fosters 
iterative, shared conceptual development.

3  |  INTRODUCING THE PR AC TIC AL 
ROADMAP FOR INTEGR ATING ECOLOGY 
AND ESMs

New efforts to close the gap between ecological empiricists and 
Earth system modelers are growing, but the two communities could 
still be better integrated. To do so, each community needs to under-
stand the approaches used by the other and work together both to 
develop the technical advancements needed to expedite data-model 
integration (e.g., Fer et al., 2021) and to address the social dimensions 
of collaboration. Focusing only on technical or mathematical aspects 

of data-model integration can perpetuate barriers through the use of 
discipline-specific language and dismissal of nontechnical obstacles 
to participation (Bernard & Cooperdock, 2018; Duffy et al., 2021; 
Morales et al., 2020), which can lead to members feeling excluded 
and keep disciplines siloed (Marín-Spiotta et al., 2020; Mattheis et al., 
2019). In general, effective cross-disciplinary collaboration depends 
on several key principles that facilitate team dynamics (O′Rourke et al., 
2013) and need to be built into the start of a collaboration; namely, 
respect and trust among all team members, clear communication, 
common goals, and effective project leadership (Nancarrow et al., 
2013). Research shows that clear team communication is essential for 
optimizing project outcomes (Anderson-Cook et al., 2019; Kuziemsky 
et al., 2009), as it is the foundation for identifying shared objectives 
and building interpersonal relationships that are necessary for teams 
to remain cohesive during times of conflict (Cooley, 1994). Breaking 
down barriers to interdisciplinary collaboration requires researchers to 
adopt practices that not only improve their collaboration but also dis-
mantle the inequitable and exclusionary dimensions of their disciplines 
(Chaudhary & Berhe, 2020; Duffy et al., 2021; Emery et al., 2021). 
Additionally, computing tools and frameworks evolve rapidly, and so-
lutions that focus on facilitating collaboration will outlast any particu-
lar technological tool. To achieve better integration and collaboration 
among empirical and modeling communities, we outline a few neces-
sary foundational principles of collaboration and educational change 
(Figure 2). We also propose a workflow that highlights one possible 
pathway to improve collaboration between fields to improve the work 
of each (Figure 4).

In addition to strengthening empiricist–modeler team dynamics, 
we emphasize the need to rethink ecological education to incorpo-
rate process modeling concepts and normalize regular collaboration 
between empirical and modeling subdisciplines. At many institutions, 
the ecology curriculum emphasizes field techniques and statisti-
cal analysis, but fewer options may exist for courses on ecological 
process-based modeling. While a given department may offer one or 
a few courses, often these are not required in ecological education, 
and programming skills development is limited to high-level statistics 
programs and languages like R and Python that do not entirely pre-
pare students for the computer science that powers modern ESMs. 
Conversely, educational requirements in other disciplines, such as 
atmospheric sciences, frequently include both field and modeling 
techniques and in-depth quantitative and programming skills in which 
computational science and applied mathematics are essential tools of 
the science. Ecologists wanting to learn modeling techniques often 
find themselves taking classes outside their discipline, attempting to 
separate content from technique, and applying techniques to a dif-
ferent field, which is a challenging task. This can pose a large enough 
burden on the student that many do not follow through, finding it eas-
ier to continue with familiar skills. A detailed plan for modifying the 
way ecology programs teach quantitative skills is beyond the scope 
of this paper, but others have begun the difficult work of rethinking 
educational paradigms to address this problem (Hampton et al., 2017).

Earth system model communities also need to identify oppor-
tunities for redesigning their training, so they can learn more about 
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ecological concepts and data collection frameworks. Ecological data 
are complex and filled with caveats, and modelers often encounter 
data after it has been processed and organized and thus may be un-
familiar with the nuances of data collection and analysis. Modeler 
training in ecological concepts could take place at the student level, 
with classwork focused on the impacts of living organisms on biogeo-
chemical, water, and energy cycles, or at later career stages via field 
site visits, shared seminars, interdisciplinary conference sessions, 
etc. One powerful approach is for a modeler to take a day trip with 
an ecologist to engage in fieldwork. While we recognize that the out-
doors are not a comfortable space for many people and this can be a 
barrier to participation (Anadu et al., 2020; Giles et al., 2020; Morales 
et al., 2020), direct experience with how an ecologist gathers data 
can be an invaluable insight into the limitations and interpretation of 
data in a modeled context. Virtual site visits using recorded video are 
another alternative for those unable to visit in person.

Beyond these foundational shifts, we propose a new workflow 
for modeler–empiricist collaboration with three specific stages 
(Figure 4). This workflow is meant as one (but not the only) route for 
any empiricist or modeler to understand the stages involved in inte-
grating a new process or idea into an ESM. We strive to break down 
traditional disciplinary barriers between modelers and empiricists 
and highlight the iterative collaboration and shared skill sets that are 
necessary at each stage. The first stage in this workflow (“Assess 
process & potential impact”) includes a list of questions that anyone 
(regardless of programming ability) can ask to assess the readiness 
of a process for incorporation into an ESM. The second stage (“Test 
process alone”) involves the quantification and scaling of the new 
ecological concept using simple models and large-scale parameter 
determination. Finally, the last stage of the flowchart (“Test process 
with ESM”) discusses the multiple steps involved in making modi-
fications to an ESM, evaluating the impact of the new process on 
model-wide behavior, and projecting the large-scale impact of the 
new process within the Earth system. Importantly, each stage of this 
workflow generates valuable scientific products (e.g., hypotheses, 
new or improved theory, regional- or ecosystem-scale models), re-
gardless of whether the endpoint of “inclusion in an ESM” is reached. 
We recognize that tackling any part of this workflow is challenging 
for aspiring and seasoned modelers alike, and we encourage re-
searchers to see it through. We include specific illustrative examples 
for each stage of the workflow (Boxes 1–3) and one that illustrates 
stepping through the entire workflow (Box 4), as well as resources 
for accomplishing each step (Table 1).

3.1  |  Workflow part 1: Identifying and 
understanding a new process

The first stage of the proposed workflow assesses the readiness of 
a new process for inclusion in an ESM based on how well the pro-
cess can be quantified and understood in an ecosystem context. 
Many empiricists recognize the importance of their work for under-
standing global change and highlight the need to incorporate new 

processes into models. However, highlighting this need has minimal 
impact on ESMs unless coupled to an understanding of the stages 
of model development and the unique types of data necessary to 
progress through those stages. As such, the first part of the work-
flow provides three guiding questions empiricists should ask to as-
sess whether a new process is ready for inclusion in an ESM, each 
of which will be discussed in more detail in the following paragraphs 
(Figure 4, “Assess process & potential impact”). These questions can 
help identify data gaps and point to valuable targets for future ex-
periments to facilitate downstream ESM integration. Importantly, 
these questions can be addressed by any empiricist without requir-
ing formal modeling skills. While connecting with modelers is not 
required at this point, it can be helpful in co-designing future experi-
ments to make process integration more streamlined (Figure 2).

The first guiding question aims to evaluate the level of theoret-
ical/empirical understanding of the targeted process: Do you expect 
your process to respond consistently to environmental drivers, enabling 
scaling across space and time? Consistent, quantified patterns are 
the heart of process modeling. Detailed understanding of a pro-
cess or mechanism at a single location can help to identify whether 
the process is likely to scale. In order to develop a broad theoret-
ical representation of a process, it can help to determine whether 
data are available across multiple sites and ecosystem types and 
at various timescales. For example, if a specific tropical soil owes 
its high carbon storage capacity to a unique volcanic mineral (Torn 
et al., 1997), it would be wise to evaluate the carbon storage capacity 

BOX 1 Example: Herbivores

Herbivores like insects and grazers have large impacts on 
plant biomass and productivity, yet they are still absent from 
Earth system models (ESMs). How do the conceptual ques-
tions in Part 1 of the workflow (Figure 4) guide next steps 
in deciding whether to incorporate herbivores in ESMs? 
Although herbivores are broadly not yet included in ESMs 
(Question 2, Figure 4) and are known to have important im-
pacts on plant biomass with feedbacks to climate (Question 
3, Figure 4), ESMs also require that any new process behaves 
consistently across space and time (Question 1, Figure 4) in 
a way that can be captured quantitatively. To move forward 
with incorporating herbivores into ESMs, the known impact 
of herbivores on plant biomass must be reduced down to 
quantifiable patterns that are consistent across space and 
time. For example, do herbivores reduce plant biomass by 
a fixed proportion, or by a proportion that depends on cli-
mate factors already present in ESMs like temperature and 
precipitation? Does the impact of herbivores vary in a pre-
dictable way across continents and ecoregions? If the an-
swer is yes, then perhaps a simple model can be developed 
(Workflow part 2) or existing simple models can be consid-
ered for ESM incorporation (Workflow part 3).
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of soils without this mineral before generalizing observed patterns 
to a global scale. While it is not necessary at this stage to gather 
enough data to create a fully quantified global representation of a 
process, information gained in this step may help identify data gaps 
and guide the design of additional empirical experiments needed for 
large-scale modeling, such as repeating experiments across under-
explored regions or a wider range of environmental conditions. This 
step also helps to identify conceptual areas where a large amount 
of data may be available, but consistent relationships with environ-
mental factors and process rates have not yet been identified. For in-
stance, soil microbial biodiversity is being rapidly cataloged through 
metagenomics, but these data do not yet provide critical information 
for representing process rates at large scales (Fierer et al., 2021).

The second question in this stage of the workflow requires ecol-
ogists to get familiarized with ESMs and the way processes are rep-
resented: Is your process already in or related to an existing process in 
an ESM? Investigating this question will help identify existing model 
frameworks that can be used as scaffolding for building simple 
models and ultimately incorporating the process into an ESM. ESMs 
represent similar environmental processes using a variety of differ-
ent approaches and equations, so it might help to start by identi-
fying one or more ESMs that you may be interested in and reading 
model documentation to determine how related processes are rep-
resented and whether the model will fit your needs. For example, 
if you want to improve the representation of foliar nitrogen acqui-
sition, it is vital that the model you choose already has a terrestrial 
nitrogen cycle. This is also an ideal time to discuss collaborations 
with ESM developers. We encourage ESM developers at this stage 
to welcome ecologists interested in working with ESMs by taking 
the time to explain modeling concepts in jargon-free language and 
providing resources to work through technical challenges.

If the selected ESM already contains a model of the process, the 
empiricist can consider how it can be improved or revised using new 
data or theoretical understanding. Many times a process is repre-
sented implicitly (e.g., soil microbial activity is often represented 
using a cascading decomposition scheme; Wieder, Allison, et al., 
2015; Wieder et al., 2018). Illustrating that explicit representation 
of the process will fundamentally change model behavior will help to 
determine whether an explicit representation is needed. In addition, 
if the current representation of the process connects multiple cy-
cles (e.g., carbon and nitrogen, water, and energy), exploring existing 
model structures can help empiricists understand all the connections 
between their process and various cycles that must be elucidated 
and quantified when updating the ESM. Like hooking up speakers to 
a television or finding the right dongle to plug in your phone, the new 
process will only work within the ESM if all the appropriate inputs 
and outputs are connected. If the process is not currently in a model, 
it is worth investigating why not (perhaps connecting with an ESM 
modeler) and whether it might be implicitly included through other 
model process representations. For example, plant hydraulic stress 
is not always explicitly included in ESMs (Kennedy et al., 2019), but 
may be implicitly included by existing connections between soil 
moisture and stomatal conductance.

The third and final question helps to identify ecological concepts 
that may be more appropriate to a different type of modeling because 
they are unlikely to alter climate simulations within an ESM: Is the pro-
cess likely to influence climate on scales of time and space consistent with 
other ESM processes? Put another way, is the process likely to change 
the results of global climate simulations using ESMs? Generally, ecol-
ogy in ESMs impacts climate prediction in two major ways: through 
biogeochemical (carbon and nutrient cycling) and biogeophysical 
(evapotranspiration and energy fluxes) processes. Coupling these pro-
cesses provides a means for assessing feedbacks between ecosystems 
and climate that distinguish ESMs from stand-alone ecosystem models.

Simple estimates can be made to assess whether a process, 
when applied to large regions or the entire globe, has the potential 
to meaningfully influence climate. For example, the general process 
of insect herbivory, which responds to temperature (e.g., Deutsch 
et al., 2018; Edburg et al., 2011) and could meaningfully affect car-
bon fluxes through changing plant biomass, might influence climate 
(Box 1). Temperature affects the distribution and abundance of mos-
quito species (Hunt et al., 2017), but if mosquitoes are not known to 
have a meaningful impact on climate, inclusion of mosquito species 
distributions would not change the outcome of ESM simulations, and 
may be better suited to a different type of model. In addition, new, 
climate-influencing processes must occur or change at a rate that is 
meaningful at ESM timescales. For example, changes in environmental 
conditions may alter the rates of soil microbial metabolic processes 
over the course of minutes or even seconds, but these rapid fluctu-
ations are too fast to capture in the time step of a typical ESM. On 
the other end of the spectrum, bedrock weathering is a process that 
releases nutrients for plants and may impact plant biomass (Morford 
et al., 2011), but it happens so slowly that it is unlikely to shift simu-
lated plant productivity in an ESM over decade to century timescales.

Apart from facilitating ESM incorporation, these questions pro-
duce valuable intellectual products on their own: greater understand-
ing of how a process fits into the terrestrial system, identification of 
knowledge gaps and a clear path toward future empirical work, and 
determining whether an ESM is the appropriate modeling tool for the 
process of interest. Reflecting on these questions can help ecologists 
define “future directions” for their work with greater specificity than 
“inclusion in a model,” and also generate valuable insights into the 
scale of an ecological process and its connections to water, energy, 
or biogeochemical cycles. In a classroom setting, these questions can 
be an effective way to practice “thinking like a modeler” without re-
quiring any involvement with programming. Regardless of whether 
the answer to all of these questions for a given ecological concept is 
“yes,” they are beneficial for ecologists to ask.

3.2  |  Workflow part 2: Beginning to work with 
simple models

After assessing the theoretical understanding of a process and its likely 
importance for terrestrial ecosystems and climate, the next work-
flow steps involve the iterative development, implementation, and 
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evaluation of simple models outside of the ESM, in addition to the col-
lection and/or assembly of data necessary to apply the simple model at 
large scales (Figure 4, “Test process alone”). The aim of these activities 
is to generate knowledge, highlight uncertainties, and refine under-
standing of the process(es) in question. At its core, this stage involves 
identifying formulas to represent our theoretical understanding of 
ecological systems. This stage is a key precursor to working with ESMs 
because once a process is integrated into an ESM, it becomes harder to 
discern the cause of disagreement with observations, and uncertainty 
increases. For example, photosynthesis can be evaluated with leaf gas 
exchange data in highly controlled chambers. Gross primary productiv-
ity is evaluated using eddy covariance flux towers. Errors can arise in 
the model's scaling from leaf to canopy, soil moisture, nitrogen avail-
ability, leaf area index, and aspects of the model other than the pho-
tosynthesis parameterization (Rogers et al., 2017). The "test process 
alone" stage is essential to identify the adequacy of a process model 
before compensating errors occur within the ESM. Although not a 
strict requirement, this phase of the workflow is best accomplished 
with equal, collaborative contributions from both empiricists and mod-
elers (Figure 2) including someone familiar with ESMs who can craft a 
bridge for future process incorporation.

Simple models are created at this stage by translating knowledge 
from conceptual models of organisms and ecosystems to mathemat-
ical representations of matter and energy. The development of sim-
ple models can start by creating a simple statistical model or using 
a pre-existing model. For example, R has a photosynthesis package 
(Duursma, 2015) that can be used as a starting point for modifica-
tions to photosynthesis like temperature acclimation (e.g., (Smith 
et al., 2017)) or ozone damage (e.g., Lombardozzi et al., 2012). Simple 
models can also be developed using any coding language (both R and 
Python are free and open source), or even start by using a spread-
sheet program like Excel, and can range in complexity from a single 
equation to a complex web of variables and parameters. Unlike the 
first phase of the workflow, testing theory with data at this phase 
requires some comfort with programming and data management 
(for resources, see Table 2). These activities can be easily integrated 
into ecological coursework, and a variety of resources have been 
developed to facilitate this (e.g., Carey et al., 2020). Additionally, 
cross-disciplinary collaboration is beneficial at this stage, as it helps 
to formalize conceptual models, clarify assumptions, evaluate ideas 
within the scientific community about a process, connect various 
components of ecosystems and the Earth system, and test the 
broader applicability of theories over space and time.

In addition to simple model development, this phase of the work-
flow involves assembling the data necessary to estimate parameters 
and drive simple models at large scales. (Note: In a model, a “param-
eter” is the value of a variable in an equation. The word “parame-
terization” may seem like a derivative of “parameter,” but is in fact 
a separate concept referring to representing a complex microscale 
process as an approximate bulk process. For example, model repre-
sentations of photosynthesis are a parameterization of subcellular-
level processes, and may use parameter values within the calculation; 
Bonan, 2019). Necessary data fall into several distinct categories: 
data for parameter estimation during model development, driver 
data to feed into the model (e.g., climate or soil characteristics), and 
data for benchmarking the model following simulations (i.e., obser-
vational data to compare against model output).

At this stage, it is worth making a “shopping list” of the data nec-
essary for a given modeling exercise and evaluating the availability of 
values at the relevant scale (Figure 3). These data may come initially 
from a single site or lab experiments, but to eventually scale model re-
sults globally, data gathered across multiple regions and experiments 
become useful. ESMs use a variety of large-scale datasets for param-
eter estimation and evaluation, and it can be helpful to seek out data-
sets already in use before attempting to assemble a new dataset from 
scratch. Large-scale data can come from meta-analytical techniques 
and syntheses (e.g., Ainsworth & Long, 2005; Field & Gillett, 2010; 
Lombardozzi et al., 2013), pre-existing large synthesized datasets 
(e.g., SoDaH, Wieder et al., 2020; TRY, Kattge et al., 2011), satellite 
data (e.g., Li & Xiao, 2019), or model-derived products (e.g., Fluxnet-
MTE; Jung et al., 2020). Direct measurements are generally prefera-
ble for parameter estimation and model evaluation but are not always 
feasible to collect. As a result, parameter estimation and model eval-
uation often use data products (i.e., data that have been modified by 

BOX 2 Example: Soil microbes

After establishing that a new process is appropriate to 
consider including in an ESM (Part 1), what comes next? 
Current models of soil microbial activity highlight Part 2 
of the workflow: Simple quantified models evaluated at a 
variety of scales but not yet incorporated into ESMs. As 
an example, the MIcrobial-MIneral Carbon Stabilization 
(MIMICS) model was motivated by theories highlighting 
interactions among soil microbes and minerals that are re-
sponsible for soil organic matter decomposition and per-
sistence. A simple process model was initially developed 
in R using measurements from laboratory experiments and 
rates of leaf litter mass loss. This model was tested first at a 
single site (Wieder et al., 2014), and subsequent evaluation 
across continental and global scale gradients illustrated 
reasonable agreement with litter decay rates and soil car-
bon stocks (Wieder, Grandy, et al., 2015) and a higher vul-
nerability of Arctic soil C stocks, compared to models that 
implicitly represent microbial activity (Wieder et al., 2019). 
MIMICS continues to undergo further development (e.g., 
to include coupled C–N biogeochemistry; Kyker-Snowman 
et al., 2020) and vertical resolution (Wang et al., 2021), re-
finement (Zhang et al., 2020), and evaluation (Basile et al., 
2020; Koven et al., 2017; Shi et al., 2018; Sulman et al., 
2018). All of these activities rely on conducting simulations 
across multiple study sites and at global scales, which is a 
valuable precursor to considering incorporating MIMICS 
into an ESM.
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models) to achieve the spatial and temporal scales required by the 
ESM. Data products can be closely connected to the original data 
(i.e., data averages) or less closely connected (i.e., output of another 
mechanistic model that uses data as an input). Understanding the 
uncertainty of a data product is critical for determining the value of 
its use in parameter estimation and model evaluation (Dagon et al., 
2020; Dietze, 2017). Simple models often get stuck here on the way 
to ESM incorporation because of gaps in data requirements to run 
models at global scales (e.g., lack of maps of soil edaphic properties or 
other input data that may be critical for further model development).

The creation and improvement of simplified mathematical models 
and large-scale synthesized datasets make several valuable contribu-
tions to understanding and refining ecological theories, regardless of 
the eventual implementation in ESMs. Simple models help formalize, 
and make explicit, the underlying assumptions in the theories they 
represent and can illustrate weaknesses in existing theory. As such, 
they can be used to generate testable hypotheses that can be interro-
gated with existing data or new experiments. Estimating parameters 
for simple models with available observations helps identify data and 
knowledge gaps that can be addressed with further study. Compared 
to larger ESMs, simple models have greater traceability, allowing sci-
entists to explore and understand model complexity, their associated 
uncertainties, and emergent properties that can be evaluated with 
independent observations. These simpler models also have the advan-
tage of being easier to use, with greater flexibility and lower computa-
tion costs than running a full ESM, and can potentially be implemented 
in ESMs in a modularized manner that allows for testing multiple eco-
logical theories (e.g., Fisher & Koven, 2020). Finally, these models help 
to clarify theory and develop concepts through independent commu-
nity efforts to use them and improve their process representation.

3.3  |  Workflow part 3: Integrating processes 
into ESMs

Developing and evaluating a simple model ultimately pave the way 
for integrating a process into an ESM, as illustrated in the final stage 
of the workflow (Figure 4, “Test process with ESM”). The first step is 
deciding which ESM to use. Many ESMs exist and vary substantially in 
their ecological process representations (Fisher & Koven, 2020), and 
adding a new process requires an understanding of how processes of 
interest are currently represented in a given ESM (as in Stage 1) and 
a simple model that can be integrated within the framework of that 
ESM (developed in Stage 2). Additionally, some ESMs have proprie-
tary or restricted access (e.g., GFDL-ESM, IPSL-CM5; Dufresne et al., 
2013; Dunne et al., 2020) and require collaboration and/or approval 
by model developers, while others are open-source and community 
driven (e.g., CESM, E3SM; Danabasoglu et al., 2020; Golaz et al., 
2019). While not always required, incorporating new processes will 
be most efficient when building relationships with model developers 
who can help with technical aspects of code development. For exam-
ple, developers with experience in running and testing the model can 
provide code structure guidance and highlight possible interactions 

or feedbacks among processes that might not be obvious to a novice 
model developer. ESM communities can be insular and siloed at times, 
and ESM developers at this stage can help build more integrated 
empirical–modeling collaborations by seeking out and remaining open 
to working with ecologists (see Table 2 for several opportunities).

Once access to model code is available, integrating the new pro-
cess representation can begin. The first step is finding the location 
to integrate the new process. While this will vary depending on the 
ESM, code modules will often have descriptive names and the loca-
tion of variables within the code can be searched using Linux- and 
editor-based search tools (e.g., grep). It is also helpful to find a sim-
ilar variable or process in the code (with similar inputs and outputs) 
that can be used as an example for how to structure the new pro-
cess code. Having an example to mirror can be particularly useful 
in identifying other modules where the variables may be required 
(e.g., sometimes setting the initial value for variables happens in a 
different module). Additionally, it can be helpful to outline or dia-
gram a work plan in advance, noting the modules and variables that 
will need to be added, modified, and connected.

BOX 3 Example: Photosynthetic acclimation

One example of how models have maintained parsimony 
(Part 3 of the workflow) is photosynthetic acclimation 
(Smith & Dukes, 2013). Initially, empirical models were 
developed to simulate temperature acclimation of photo-
synthetic biochemical capacity in ESMs based on observed 
responses (e.g., Kattge & Knorr, 2007; Kattge et al., 2009) 
and then incorporated in ESMs (Friend, 2010; Lombardozzi 
et al., 2015; Mercado et al., 2018; Smith & Dukes, 2013; 
Smith et al., 2017; Ziehn et al., 2011). However, more re-
cently, eco-evolutionary optimality theory has been in-
voked to simulate photosynthetic biochemical capacity in a 
way that incorporates the processes without added param-
eters (configuration variables internal to a model that rely 
on observational data), thus increasing model realism with-
out altering model reliability (Scott & Smith, 2021; Smith 
& Keenan, 2020; Wang, Prentice, Keenan, et al., 2017). 
Eco-evolutionary optimality theory approaches rely on the 
assumption that natural selection will remove noncompeti-
tive traits from an environment, thus providing testable, 
theoretical trait responses to the environment over short 
and long timescales, and offer potential promising avenues 
for adding biological processes to ESMs with little to no 
added parameters (Franklin et al., 2020). Eco-evolutionary 
optimality approaches are available to simulate processes 
at the leaf (Jiang et al., 2020; Prentice et al., 2014; Smith 
et al., 2019; Smith & Keenan, 2020; Wang et al., 2020; 
Wang, Prentice, Davis, et al., 2017), plant (Dybzinski et al., 
2015; Farrior et al., 2013; Weng et al., 2015), and ecosys-
tem (Baskaran et al., 2017; Franklin et al., 2020) scales.
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Modifications should build on each other, starting with a simple 
change: For example, add a single variable, and then test that the 
code will compile and run for a short period of time. Sequentially add 
more complexity, connecting the new variable or process to existing 
model structure. Using this layered approach will help to identify 
any structural bugs early in the development process. Although the 
ultimate goal is to have a sophisticated representation that includes 
spatially varying processes, simpler versions of the model can—and 
should—be tested to determine the sensitivity of the system to the 
new process. These simpler model iterations are excellent training 
tools for graduate students and postdoctoral trainees as they be-
come more familiar with the model. Once the basic framework for 
the new process is in place, it can be tested to identify the magni-
tude of change in relevant processes, as well as any interactions with 
other ecosystem processes. Often, these proof-of-concept simula-
tions can turn into publications that highlight the potential impor-
tance of the process at site or global scales and identify gaps in data 
that can help to improve the process representation.

Throughout the development, testing, and evaluation process, the 
simplest relevant version or component of the ESM available should 
be used. For example, if the new process does not rely on carbon cy-
cling, it may be possible to leave out this portion of the model in your 
testing, allowing the model to run faster, and reducing the complexity 
of model interactions. Often with ecological processes, the develop-
ment process uses only the terrestrial component of an ESM driven by 
a gridded atmospheric data product (e.g., reanalysis), since fully cou-
pled ESM runs are far more computationally expensive than smaller 
terrestrial-only runs. Additionally, running in the coarsest available 
resolution and for the smallest spatial domain possible (e.g., a single 
site) will expedite model testing. Once code is tested, running it glob-
ally (and eventually coupled to an atmospheric model) is necessary to 
ensure the simulation operates appropriately over the global domain.

An approach called “modular development” can also be useful 
for testing and evaluating different ecological theories and can be 
employed when implementing new processes in ESMs (Fisher & 
Koven, 2020; see also Clark et al., 2015). This involves adding an 
alternate representation of a process that is already simulated in 
a model (not removing the process) and letting the user to specify 
which theory the model will use in a given simulation. For example, 
testing multiple representations of stomatal conductance (Franks 
et al., 2018), soil carbon and nitrogen cycling (Wieder et al., 2015, 
2018), and hydrology (Clark et al., 2008, 2011) have been helpful in 
testing different theories and highlighting when and where certain 
process representations perform best. This allows for refinement of 
existing theory and process representation, advancing the state of 
current knowledge.

Once the new process is incorporated, the model must be 
tested and evaluated. A first step is to determine whether the 
new process fundamentally changes model behavior relative to 
a simulation without this process. Does it affect other simulated 
processes, and by how much? Many processes do not exist in iso-
lation within a model and thus cannot be modified for only one 
purpose. Better models of photosynthesis, for example, may be 

BOX 4 Example: Ozone impacts on vegetation

The following example illustrates the entire workflow, 
from initial conceptual development to simple modeling 
to working with ESMs. As part of her research, co-author 
Lombardozzi measured how leaf-level gas exchange 
changed in response to ground-level ozone. Upon analyz-
ing her data, she found that leaf-level carbon (photosynthe-
sis) and water (transpiration) fluxes decreased at different 
rates. Since these are both important greenhouse gases 
and affect fundamental plant processes (photosynthesis 
and stomatal conductance, which scale through time and 
space regardless of biome), she thought that ozone damage 
could have a global impact on climate feedbacks on model-
relevant timescales and therefore should be included in 
large-scale models. Although Lombardozzi had no modeling 
or coding experience, she emailed several people working 
on the Community Land Model (CLM) to see if they might 
want to collaborate. She did some research about the pho-
tosynthesis and stomatal conductance models used in CLM 
and talked with modeling colleagues to decide how to best 
include this type of damage. After completing online Linux 
and Fortran tutorials, Lombardozzi started using a simple 
photosynthesis–stomatal conductance model provided by 
her colleagues. She applied linear regressions calculated 
from her experiment to the rates of maximum carboxyla-
tion (Vcmax) to simulate ozone damage to photosynthetic 
enzymes. She was able to show that including ozone dam-
age improved simulated photosynthesis and stomatal con-
ductance at the leaf scale (Lombardozzi et al., 2012).
Did these changes matter globally? Lombardozzi worked 
with model developers to find out, using the simple 
model to update code in the CLM to account for ozone 
damage. Using data from her experiment and a constant 
ozone concentration, she showed that ozone did have 
large consequences for carbon and water cycling globally 
(Lombardozzi et al., 2013). While this experiment high-
lighted the sensitivity of global processes to ozone dam-
age, it did not provide a realistic assessment of how ozone 
changes carbon and water cycling. Lombardozzi, therefore, 
synthesized existing published literature to determine how 
photosynthesis and stomatal conductance change in rela-
tion to ozone exposure, and identified a complete lack of 
data for tropical forests (Lombardozzi et al., 2013). Despite 
missing data for large biomes, these data were then used to 
update the CLM code to capture responses across different 
plant functional categories (e.g., broadleaf trees, needle-
leaf trees, herbaceous vegetation), and when combined 
with realistic ozone data, simulated that ozone decreases 
global photosynthesis by 10.8% and transpiration by 2.2%, 
with larger impacts in Eastern United States, Europe, and 
Southeast Asia (Lombardozzi et al., 2015).
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desired to improve the carbon cycle, but also impact energy and 
water fluxes to the atmosphere through stomatal conductance 
(Bonan et al., 2011). A second step is to evaluate model behavior 
against observations. Model evaluation is most effective if multi-
ple processes are assessed, and is most useful when compared to 
evaluation of a baseline model simulation where the new process 
is not simulated. This step is similar to simple model evaluation 
in the second stage of this workflow, but this evaluation process 
should be repeated once the simple model is embedded within 
an ESM. One simple form of evaluation is to run a simulation at 
a single location where relevant observational or experimental 
manipulation data have been collected, such as a field site or a 
flux tower (Cheng et al., 2019; Medlyn et al., 2015). These data 
can be used to assess whether the new model behavior funda-
mentally changes model performance (De Kauwe et al., 2013, 
2014; Smith et al., 2015; Thomas et al., 2013; Zaehle et al., 2014). 

It is also important to evaluate global responses. While global 
data can be more challenging to access, several resources are 
currently available. Perhaps, the most useful is the International 
Land Model Benchmarking (Collier et al., 2018) project, which 
has developed internationally accepted benchmarking standards 
for ESM performance. This project has compiled global datasets 
for a range of variables and can help to identify where model 
performance is enhanced or degraded. Remotely sensed data 
products can also help with model evaluation at regional to 
global scales.

One of the greatest challenges in ESM development is en-
suring parsimony while capturing the full range of biologi-
cal complexity. This is particularly challenging for community 
models with contributors from multiple fields and institutions, 
which commonly suffer from “feature fatigue.” Human instinct 
is to continue to add features to a solution, even when removing 

TA B L E  2  Table of textbooks and free resources for developing cross-disciplinary skill sets in empirical and modeling work and learning to 
traverse the stages of integrating new processes into an Earth System model. For a regularly updated list of resources, visit https://ecoesm.
github.io/

Skill/Category Item Description Link

Programming NCAR Python tutorials Basic introduction to the Python 
language from the National Center for 
Atmospheric Research

https://ncar.github.io/pytho​n-tutor​ial/

Programming PEcAn project tutorials Introduction to working with the Predictive 
Ecosystem Analyzer

https://pecan​proje​ct.github.io/tutor​ials.html

Programming The Unix Shell The basics of file systems and the shell http://swcar​pentry.github.io/shell​-novic​e/

Programming Udacity Free courses on basic programming 
competency with github, linux, R, 
python, and many others

https://www.udaci​ty.com/

Programming Software Carpentry Free courses on basic programming 
competency with github, linux, R, 
python, and many others

https://softw​are-carpe​ntry.org/lesso​ns/index.
html

Programming R tutorial Basic introduction to working with R https://educa​tion.rstud​io.com/learn/​begin​ner/

Simple modeling InsightMaker Tools for developing quantitative stock and 
flow diagrams of processes

https://insig​htmak​er.com/

Simple modeling Teaching Resources Lessons and other resources developed for 
teaching basic principles of ecological 
modeling

https://matth​eseco​lab.com/teach​ing/
http://www.maryh​eskel.com/teach​ing.html
https://onlin​elibr​ary.wiley.com/doi/full/10.1002/

ece3.6757

Simple modeling Modeling the 
Environment

Textbook on environmental modeling by 
Andrew Ford

https://islan​dpress.org/books/​model​ing-envir​
onmen​t-secon​d-edition

Simple modeling EDDIE Modeling/forecasting teaching modules 
developed for NEON sites

https://serc.carle​ton.edu/eddie/​macro​syste​ms/
index.html

Simple modeling Excel modeling tutorial Tutorial on building simple models in Excel http://www.mbaex​cel.com/excel/​how-to-build​
-an-excel​-model​-step-by-step/

Earth system modeling Climate Change and 
Terrestrial Ecosystem 
Modeling

Textbooks on global-scale ecosystem 
modeling by Gordon Bonan

https://www.cgd.ucar.edu/staff/​bonan/​ecomo​
d/index.html

https://www.cgd.ucar.edu/staff/​bonan/​ecocl​im/
index.html

Earth system modeling CESM tutorial Workshop on working with the Community 
Earth System Model

https://www.cesm.ucar.edu/event​s/tutor​ials/

Earth system modeling Earth System Modeling 
Framework

Introduction to working with Earth System 
Models

https://earth​syste​mmode​ling.org/tutor​ials/

Earth system modeling CESM-Lab Cloud version of CLM https://github.com/NCAR/CESM-Lab-Tutorial

https://ecoesm.github.io/
https://ecoesm.github.io/
https://ncar.github.io/python-tutorial/
https://pecanproject.github.io/tutorials.html
http://swcarpentry.github.io/shell-novice/
https://www.udacity.com/
https://software-carpentry.org/lessons/index.html
https://software-carpentry.org/lessons/index.html
https://education.rstudio.com/learn/beginner/
https://insightmaker.com/
https://matthesecolab.com/teaching/
http://www.maryheskel.com/teaching.html
https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.6757
https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.6757
https://islandpress.org/books/modeling-environment-second-edition
https://islandpress.org/books/modeling-environment-second-edition
https://serc.carleton.edu/eddie/macrosystems/index.html
https://serc.carleton.edu/eddie/macrosystems/index.html
http://www.mbaexcel.com/excel/how-to-build-an-excel-model-step-by-step/
http://www.mbaexcel.com/excel/how-to-build-an-excel-model-step-by-step/
https://www.cgd.ucar.edu/staff/bonan/ecomod/index.html
https://www.cgd.ucar.edu/staff/bonan/ecomod/index.html
https://www.cgd.ucar.edu/staff/bonan/ecoclim/index.html
https://www.cgd.ucar.edu/staff/bonan/ecoclim/index.html
https://www.cesm.ucar.edu/events/tutorials/
https://earthsystemmodeling.org/tutorials/
https://github.com/NCAR/CESM-Lab-Tutorial
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features may be more beneficial or efficient (Adams et al., 2021). 
While adding processes can improve model realism, care must 
be taken to avoid sacrificing model reliability, which can be de-
graded with the addition of uncertain parameters (Prentice et al., 
2015). Eco-evolutionary optimality theory is one recent tool that 
can be used to improve model realism while limiting the number 
of new parameters (Box 3; Scott & Smith, 2021; Wang, Prentice, 
Keenan, et al., 2017). Unlike statistical approaches where envi-
ronmental responses are hard-coded with parameters, a theo-
retical approach allows process responses to emerge with fewer 
parameters (Prentice et al., 2015). These responses can then be 
tested with data that might, in a more statistical approach, be 
needed to estimate parameters.

The workflow so far has presented guidelines for incorporating 
a new process into an ESM, which requires substantial work in de-
veloping and incorporating new code into a model and then evalu-
ating the responses of terrestrial processes. Often, the ecological 
workflow ends here with the assessment of the global-scale impact 
of a process and how it may change ecological functioning through 
time. Beyond this, an exciting next step is to understand whether 
this new process has climate feedbacks by comparing land-only and 
coupled model simulations. Land models can be coupled to other 
ESM components (atmosphere, ocean, ice, etc.) to investigate global 
feedbacks in water, energy, or biogeochemical cycles. Connecting 
land and atmosphere components allows the investigation of unex-
pected feedbacks with the atmosphere that may be different from 
land-only simulations.

4  |  CRE ATING COMMUNIT Y CHANGE 
ACROSS SC ALES

Empirical and modeling communities already work together and in-
fluence one another in many ways, yet integrating ecological pro-
cesses into ESMs remains a persistently slow process with myriad 
challenges limiting efficient collaboration. Historically, ESMs have 
been developed by atmospheric and physical science communities 
while ecology has only been integrated relatively recently, and the 
disciplinary requirements in trainee education have not provided 
enough of a shared foundation to build strong conceptual bridges 
between ESMs and empirical ecologists. These communities must 
collectively address persistent obstacles including confusing techni-
cal language, lack of resources for skills development, and the need 
for better connections and integration across scientific communi-
ties. We provide resources to help expand terrestrial ecological pro-
cess representation in ESMs (Table 2). With the advent of these and 
other tools, empiricists will be better poised to take advantage of 
technical workflows that can help streamline data-model integration 
(e.g., Fer et al., 2021).

The interdisciplinary work of developing an ESM is not only 
technical, but also social. As such, in addition to the workflow 
presented above, we offer specific suggestions for restructuring 
ecological education and interactions within collaborations (see 

Section 3), both of which are key to ensuring that the workflow 
does not break down. For bridge-building between communities 
to be inclusive, the modeling and empirical communities need to 
examine their community practices, values, and norms. This work 
includes understanding the demographics of who is (and is not) 
represented in the research communities (Bernard & Cooperdock, 
2018), what processes our communities are willing to consider (or 
dismiss) as valuable contributions to ESMs (e.g., microbes, moths, 
management), where data are collected and why some regions or 
ecosystems are over/undersampled (Martin et al., 2012; Metcalfe 
et al., 2018), when we overlook potential collaborators or fail to pro-
vide them with platforms for sharing their work, such as at confer-
ences (Ford et al., 2019), and why we make the decisions that we do 
about where to focus efforts.

Improved collaboration between empirical and modeling com-
munities will positively benefit each community. Adding modeling 
to empirical work can increase its impact while simultaneously 
advancing ecological theory, modeling capabilities, and model re-
alism. To get started or go further with this work, we have assem-
bled a list of resources for skills development at each stage of the 
workflow (Table 2). To maintain contemporary resources, please 
visit the regularly updated website (https://ecoesm.github.io/). 
Despite the many complex challenges involved in integrating ter-
restrial ecology and Earth system modeling, there has never been 
a better time to attempt such difficult work. Finding and communi-
cating with scientists across the globe is getting easier every year, 
computing resources are rapidly evolving, and the internet pro-
vides an ever-growing assortment of free tools for developing new 
quantitative and programming skills. In addition, funding sources 
are increasingly recognizing the value of data-model integra-
tion (e.g., the NASA Modeling, Analysis, and Prediction program; 
https://map.nasa.gov/ or the USDA NIFA Data Science for Food 
and Agricultural Systems program; https://nifa.usda.gov/progr​am/
dsfas) and grassroots efforts are creating a framework for these 
collaborations using workshops and tutorials. Our insights into 
the history of ecology in ESMs, workflow for developing and in-
corporating ecological processes into ESMs, and specific resource 
suggestions will advance this exciting progress and provide a scaf-
fold for building fruitful bridges between empirical and modeling 
communities.
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